A Comparison Study of Kernel Functions in the Support Vector Machine and Its Application for Termite Detection
نویسندگان
چکیده
Termites are the most destructive pests and their attacks significantly impact the quality of wooden buildings. Due to their cryptic behavior, it is rarely apparent from visual observation that a termite infestation is active and that wood damage is occurring. Based on the phenomenon of acoustic signals generated by termites when attacking wood, we proposed a practical framework to detect termites nondestructively, i.e., by using the acoustic signals extraction. This method has the pros to maintain the quality of wood products and prevent higher termite attacks. In this work, we inserted 220 subterranean termites into a pine wood for feeding activity and monitored its acoustic signal. The two acoustic features (i.e., energy and entropy) derived from the time domain were used for this study’s analysis. Furthermore, the support vector machine (SVM) algorithm with different kernel functions (i.e., linear, radial basis function, sigmoid and polynomial) were employed to recognize the termites’ acoustic signal. In addition, the area under a receiver operating characteristic curve (AUC) was also adopted to analyze and improve the performance results. Based on the numerical analysis, the SVM with polynomial kernel function achieves the best classification accuracy of 0.9188.
منابع مشابه
MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملAcoustic detection of apple mealiness based on support vector machine
Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...
متن کاملApplication of Support Vector Machine for Detection of Functional Limitations in the Diabetic Patients of the Northwest of IRAN in 2017: A Descriptive Study
Background and Objectives: Support vector machine (SVM) is a robust and effective statistical method for the diagnosis and prediction of clinical outcomes based on combinations of predictor variables. The aim of this study was to use SVM to detect the functional limitations in the diabetic patients and evaluate the accuracy of this diagnosis. Materials and Methods: This descriptive study was c...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملLeast-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture
This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information
دوره 9 شماره
صفحات -
تاریخ انتشار 2018